91 research outputs found

    Semidefinite programming, harmonic analysis and coding theory

    Full text link
    These lecture notes where presented as a course of the CIMPA summer school in Manila, July 20-30, 2009, Semidefinite programming in algebraic combinatorics. This version is an update June 2010

    Linear programming bounds for codes in Grassmannian spaces

    Full text link
    We introduce a linear programming method to obtain bounds on the cardinality of codes in Grassmannian spaces for the chordal distance. We obtain explicit bounds, and an asymptotic bound that improves on the Hamming bound. Our approach generalizes the approach originally developed by P. Delsarte and Kabatianski-Levenshtein for compact two-point homogeneous spaces.Comment: 35 pages, 1 figur

    New upper bounds for kissing numbers from semidefinite programming

    Get PDF
    Recently A. Schrijver derived new upper bounds for binary codes using semidefinite programming. In this paper we adapt this approach to codes on the unit sphere and we compute new upper bounds for the kissing number in several dimensions. In particular our computations give the (known) values for the cases n = 3, 4, 8, 24.Comment: 17 pages, (v4) references updated, accepted in Journal of the American Mathematical Societ

    Signal reconstruction from the magnitude of subspace components

    Full text link
    We consider signal reconstruction from the norms of subspace components generalizing standard phase retrieval problems. In the deterministic setting, a closed reconstruction formula is derived when the subspaces satisfy certain cubature conditions, that require at least a quadratic number of subspaces. Moreover, we address reconstruction under the erasure of a subset of the norms; using the concepts of pp-fusion frames and list decoding, we propose an algorithm that outputs a finite list of candidate signals, one of which is the correct one. In the random setting, we show that a set of subspaces chosen at random and of cardinality scaling linearly in the ambient dimension allows for exact reconstruction with high probability by solving the feasibility problem of a semidefinite program

    On the theta number of powers of cycle graphs

    Get PDF
    We give a closed formula for Lovasz theta number of the powers of cycle graphs and of their complements, the circular complete graphs. As a consequence, we establish that the circular chromatic number of a circular perfect graph is computable in polynomial time. We also derive an asymptotic estimate for this theta number.Comment: 17 page

    On the density of sets avoiding parallelohedron distance 1

    Get PDF
    The maximal density of a measurable subset of R^n avoiding Euclidean distance1 is unknown except in the trivial case of dimension 1. In this paper, we consider thecase of a distance associated to a polytope that tiles space, where it is likely that the setsavoiding distance 1 are of maximal density 2^-n, as conjectured by Bachoc and Robins. We prove that this is true for n = 2, and for the Vorono\"i regions of the lattices An, n >= 2

    Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps

    Get PDF
    We apply the semidefinite programming approach developed in arxiv:math.MG/0608426 to obtain new upper bounds for codes in spherical caps. We compute new upper bounds for the one-sided kissing number in several dimensions where we in particular get a new tight bound in dimension 8. Furthermore we show how to use the SDP framework to get analytic bounds.Comment: 15 pages, (v2) referee comments and suggestions incorporate
    • …
    corecore